some properties of comaximal ideal graph of a commutative ring

Authors

zeinab jafari

islamic azad university, central tehran branch mehrdad azadi

islamic azad university, central tehran branch

abstract

let $r$ be a commutative ring with identity‎. ‎we use‎ ‎$varphi (r)$ to denote the comaximal ideal graph‎. ‎the vertices‎ ‎of $varphi (r)$ are proper ideals of r which are not contained‎ ‎in the jacobson radical of $r$‎, ‎and two vertices $i$ and $j$ are‎ ‎adjacent if and only if $i‎ + ‎j = r$‎. ‎in this paper we show some‎ ‎properties of this graph together with planarity of line graph‎ ‎associated to $varphi (r)$‎.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Some results on a supergraph of the comaximal ideal graph of a commutative ring

Let R be a commutative ring with identity such that R admits at least two maximal ideals. In this article, we associate a graph with R whose vertex set is the set of all proper ideals I of R such that I is not contained in the Jacobson radical of R and distinct vertices I and J are joined by an edge if and only if I and J are not comparable under the inclusion relation. The aim of this article ...

full text

A note on a graph related to the comaximal ideal graph of a commutative ring

  ‎The rings considered in this article are commutative with identity which admit at least two maximal ideals‎.  ‎This article is inspired by the work done on the comaximal ideal graph of a commutative ring‎. ‎Let R be a ring‎.  ‎We associate an undirected graph to R denoted by mathcal{G}(R)‎,  ‎whose vertex set is the set of all proper ideals I of R such that Inotsubseteq J(R)‎, ‎where J(R) is...

full text

The annihilator-inclusion Ideal graph of a commutative ring

Let R be a commutative ring with non-zero identity. The annihilator-inclusion ideal graph of R , denoted by ξR, is a graph whose vertex set is the of allnon-zero proper ideals of $R$ and two distinct vertices $I$ and $J$ are adjacentif and only if either Ann(I) ⊆ J or Ann(J) ⊆ I. In this paper, we investigate the basicproperties of the graph ξR. In particular, we showthat ξR is a connected grap...

full text

The sum-annihilating essential ideal graph of a commutative ring

Let $R$ be a commutative ring with identity. An ideal $I$ of a ring $R$is called an annihilating ideal if there exists $rin Rsetminus {0}$ such that $Ir=(0)$ and an ideal $I$ of$R$ is called an essential ideal if $I$ has non-zero intersectionwith every other non-zero ideal of $R$. Thesum-annihilating essential ideal graph of $R$, denoted by $mathcal{AE}_R$, isa graph whose vertex set is the set...

full text

Properties of extended ideal based zero divisor graph of a commutative ring

This paper deals with some results concerning the notion of extended ideal based zero divisor graph $overline Gamma_I(R)$ for an ideal $I$ of a commutative ring $R$ and characterize its bipartite graph. Also, we study the properties of an annihilator of $overline Gamma_I(R)$.

full text

On the girth of the annihilating-ideal graph of a commutative ring

The annihilating-ideal graph of a commutative ring $R$ is denoted by $AG(R)$, whose vertices are all nonzero ideals of $R$ with nonzero annihilators and two distinct vertices $I$ and $J$ are adjacent if and only if $IJ=0$. In this article, we completely characterize rings $R$ when $gr(AG(R))neq 3$.

full text

My Resources

Save resource for easier access later


Journal title:
transactions on combinatorics

جلد ۶، شماره ۱، صفحات ۲۹-۳۷

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023